
20-November-2007 © Copyright Ian D. Romanick 2007

Computer Graphics Programming I
Agenda:

● Fog

● Framebuffer operations
• Blending
• Alpha test

● Multi-pass rendering

● Term projects assigned!!!

20-November-2007 © Copyright Ian D. Romanick 2007

Fog
Typical fog...as objects get farther away from

the camera, they become more fog colored.
● Eventually objects completely fade to fog color

● Controlled by a fog weight on the range [0, 1]

● Applied after texturing and after separate specular
• Enabled with GL_FOG.

Can be used for other related effects:
● In dark environments, distant objects are darker

● Underwater objects fade to the water color
• Notice that the only difference is the color of the fog!

20-November-2007 © Copyright Ian D. Romanick 2007

Fog Parameters
Fog has 4 main parameters:

● GL_FOG_START: Distance to fog start

● GL_FOG_END: Distance to maximum fog density
• These parameters only apply to GL_LINEAR fog

● GL_FOG_DENSITY: Density (surprise!) of the fog
• This parameter only applies to GL_EXP and GL_EXP2 fog

● GL_FOG_COLOR

All parameters set via glFog{if}[v]

20-November-2007 © Copyright Ian D. Romanick 2007

Fog Modes
Fog is applied according to one of 3 equations:

● GL_LINEAR:

● GL_EXP:

● GL_EXP2:

The mode, start, end, and density control how
OpenGL calculates the fog weight from the Z
value
● Somewhat like lighting

Set as the GL_FOG_MODE parameter of glFogi

e−d×c
2

e−d×c

end−c
end−start

20-November-2007 © Copyright Ian D. Romanick 2007

Explicit Fog Coordinate
 Instead of allowing the GL to calculate a fog

coordinate, specify one explicitly
● GL_EXT_fog_coord or version 1.4

● Set GL_FOG_COORD_SRC to GL_FOG_COORD to
enable
• Set it to GL_FRAGMENT_DEPTH to disable

Fog coord specified by glFogCoord1{fd}[v]
● Coordinate is the distance used in the fog equations

●Not the fog weight!

20-November-2007 © Copyright Ian D. Romanick 2007

Heightbased Fog
Fog factor is given by:

Where:
 is the fog density function

A and B are points in space

● This integral gives the “optical depth”.

● One simplifying assumption: depends only on
height

e
−∫A

B
t dt

20-November-2007 © Copyright Ian D. Romanick 2007

Heightbased Fog (cont.)
Two components to the optical distance

between the eye and the fogged point:

● Change in altitude: y = y
point

 – y
eye

● Distance in the plane: D = ((X
point

 – X
eye

)2 + (Z
point

 –

Z
eye

)2)

Two important cases:

●y 0: D × y
point

●y 0: 1D y
2

×∫yeye

y point
 y dy

20-November-2007 © Copyright Ian D. Romanick 2007

Heightbased Fog (cont.)
Store a look-up where the value at an element

n is:

To calculate the integral over y
eye

 to y
point

, simply

calculate table[y_point]-table[y_eye]
● This kind of table is called a summed-area table,

and it is incredibly useful!

∫−∞

n
 y dy

20-November-2007 © Copyright Ian D. Romanick 2007

References
http://developer.nvidia.com/object/shadows_transparency_fog.html

http://mrl.nyu.edu/~perlin/experiments/ball/

● Very cool example of what can be done with explicit fog
coordinates...by one of the legends of computer graphics

http://mrl.nyu.edu/~perlin/experiments/gabor/

● Some of the theory behind the above Java applet.

Legakis, J. Fast multi-layer fog. In ACM SIGGRAPH 98
Conference Abstracts and Applications (Orlando, Florida,
United States, July 19 - 24, 1998). SIGGRAPH '98. ACM, New
York, NY.

● Great paper, but not available on-line. :(

http://developer.nvidia.com/object/shadows_transparency_fog.html
http://mrl.nyu.edu/~perlin/experiments/ball/
http://mrl.nyu.edu/~perlin/experiments/gabor/

20-November-2007 © Copyright Ian D. Romanick 2007

Radial Fog
GL_FRAGMENT_DEPTH based fog generates

incorrect values away from the screen center
● It uses the distance from the near plane instead of

the distance from the eye.
● Could fix by calculating

true distance on CPU and
using explicit fog
coordinates.

20-November-2007 © Copyright Ian D. Romanick 2007

Radial Fog (cont.)
GL_NV_fog_distance also fixes this.

● Adds new fog param GL_FOG_DISTANCE_MODE_NV
● Three possible values:

• GL_EYE_PLANE: Fog coord is Z value in eye-space
• GL_EYE_PLANE_ABSOLUTE_NV: Fog coord is ∣Z∣ value

in eye-space
● This is the “usual” approximation allowed by the OpenGL spec

• GL_EYE_RADIAL_NV: Fog coord is the distance of the
point to the eye

20-November-2007 © Copyright Ian D. Romanick 2007

Blending
Typically used for one of a few operations:

● Translucent / transparent objects
• In general this is a hard problem
• Objects must be rendered back to front
• Polygons can't intersect

● Antialiasing
• Especially useful for fonts

● 2D compositing
• Uh...you've seen OS X, right?

● Multi-pass rendering

20-November-2007 © Copyright Ian D. Romanick 2007

Blend Function

Fragment color

F
dst

C
dst

F
src

C
src

Source blending factor:
● GL_ZERO

● GL_ONE

● GL_SRC_ALPHA

● GL_ONE_MINUS_SRC_ALPHA

● GL_DST_COLOR

● GL_ONE_MINUS_DST_COLOR

● GL_DST_ALPHA

● GL_ONE_MINUS_DST_ALPHA

● GL_SRC_ALPHA_SATURATE

F
src

 = min(A
s
, 1 - A

d
)

Color already in framebuffer

Destination blending factor:
● GL_ZERO

● GL_ONE

● GL_SRC_COLOR

● GL_ONE_MINUS_SRC_COLOR

● GL_SRC_ALPHA

● GL_ONE_MINUS_SRC_ALPHA

● GL_DST_ALPHA

● GL_ONE_MINUS_DST_ALPHA

× ×

20-November-2007 © Copyright Ian D. Romanick 2007

GL_EXT_blend_color
F

dst
C

dst
F

src
C

src

Source blending factor:
● GL_CONSTANT_COLOR_EXT

● GL_ONE_MINUS_CONSTANT_COLOR_EXT

● GL_CONSTANT_ALPHA_EXT

● GL_ONE_MINUS_CONSTANT_ALPHA_EXT

Destination blending factor:
● GL_CONSTANT_COLOR_EXT

● GL_ONE_MINUS_CONSTANT_COLOR_EXT

● GL_CONSTANT_ALPHA_EXT

● GL_ONE_MINUS_CONSTANT_ALPHA_EXT

× ×

Constant color set with glBlendColorEXT.

 Included in version 1.4 and GL_ARB_imaging
● These versions drop EXT from names.

20-November-2007 © Copyright Ian D. Romanick 2007

GL_NV_blend_square
F

dst
C

dst
F

src
C

src

Source blending factor:
● GL_SRC_COLOR

● GL_ONE_MINUS_SRC_COLOR

Destination blending factor:
● GL_DST_COLOR

● GL_ONE_MINUS_DST_COLOR

× ×

Also included with core version 1.4.

20-November-2007 © Copyright Ian D. Romanick 2007

Blend Equation

Several extensions allow different math:
● GL_EXT_blend_subtract: GL_SUBTRACT,
GL_REVERSE_SUBTRACT

● GL_EXT_blend_minmax: GL_MIN, GL_MAX
• Both included in 1.4 and GL_ARB_imaging.

Equation set with glBlendEquation.

Others exist, but are very rare.

F
dst

C
dst

F
src

C
src

× ×

20-November-2007 © Copyright Ian D. Romanick 2007

Separate Blend Function / Equation
Function and equation apply to RGB and A.

GL_EXT_blend_function_separate allows
a different function for color and alpha.
● Adds glBlendFuncSeparateEXT
● Included in core version 1.4.

GL_EXT_blend_equation_separate allows
a different equation for color and alpha.
● Adds glBlendEquationSeparateEXT
● Included in core version 2.0.

20-November-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/Alpha_compositing

● Good background of general alpha blending theory

http://developer.nvidia.com/object/order_independent_transparency.html

● Solves the ordering problem, but requires features we won't
cover this term.

● Will be required reading for VGP352. :)

http://en.wikipedia.org/wiki/Alpha_compositing
http://developer.nvidia.com/object/order_independent_transparency.html

20-November-2007 © Copyright Ian D. Romanick 2007

Alpha Test
Yet another way to reject fragments

● Enable with GL_ALPHA_TEST
● Set test function and reference value with
glAlphaFunc
• Same set of functions available as with depth testing.

● Compares fragment alpha with the reference value
• If the test fails, the fragment is rejected.
• Similar to depth testing

Alpha testing occurs before stencil testing
● ...and stencil testing happens before depth testing

20-November-2007 © Copyright Ian D. Romanick 2007

Multipass Rendering
Please...no 5th Element jokes.

Multi-pass rendering is used more work has to
be done than the hardware can handle.
● Example: produce correct specular highlights on

textured objects without
GL_EXT_separate_specular

● Example: want to do bump-mapped shading for
diffuse and specular, but only have 2 texture units

20-November-2007 © Copyright Ian D. Romanick 2007

Multipass Rendering (cont.)
Divide rendering into steps that the texture

combiners can do and that are separated by
math that the blender can do
● Example: Perform diffuse textured pass. Configure

blender to add fragment color to framebuffer.
Finally, perform specular-only pass.

20-November-2007 © Copyright Ian D. Romanick 2007

Problems with Multipass
Why do we want to avoid multi-passing?

20-November-2007 © Copyright Ian D. Romanick 2007

Problems with Multipass
Why do we want to avoid multi-passing?

● It's slower.
• The memory for each pixel gets accessed multiple times
• Have to process the same geometry multiple times
• Have to change state (e.g., textures) between passes

20-November-2007 © Copyright Ian D. Romanick 2007

Problems with Multipass
Why do we want to avoid multi-passing?

● It's slower.
• The memory for each pixel gets accessed multiple times
• Have to process the same geometry multiple times
• Have to change state (e.g., textures) between passes

● Less accurate
• Common best-case framebuffer has 8-bits of precision

per color component
• Common best-case texture combiners have 12-bits of

precision per color component

20-November-2007 © Copyright Ian D. Romanick 2007

Problems with Multipass (cont.)
Why do we want to avoid multi-passing?

● Can't always achieve desired result
• Doesn't work well with translucent objects
• Can't alway break the math down

20-November-2007 © Copyright Ian D. Romanick 2007

References
http://www.bluesnews.com/cgi-bin/finger.pl?id=1&time=20000429013039

● Interesting comments by John Carmack about color
precision in multi-pass rendering

http://www.bluesnews.com/cgi-bin/finger.pl?id=1&time=20000429013039

20-November-2007 © Copyright Ian D. Romanick 2007

Next week...
Faster geometry:

● Vertex arrays

● Vertex buffer objects

 Image transfers (maybe)
● Read pixels / draw pixels

● Color matrix

● Pixel buffer objects

20-November-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

