
20-November-2007 © Copyright Ian D. Romanick 2007

Computer Graphics Programming I
Agenda:

● Fog

● Framebuffer operations
• Blending
• Alpha test

● Multi-pass rendering

● Term projects assigned!!!

20-November-2007 © Copyright Ian D. Romanick 2007

Fog
Typical fog...as objects get farther away from

the camera, they become more fog colored.
● Eventually objects completely fade to fog color

● Controlled by a fog weight on the range [0, 1]

● Applied after texturing and after separate specular
• Enabled with GL_FOG.

Can be used for other related effects:
● In dark environments, distant objects are darker

● Underwater objects fade to the water color
• Notice that the only difference is the color of the fog!

20-November-2007 © Copyright Ian D. Romanick 2007

Fog Parameters
Fog has 4 main parameters:

● GL_FOG_START: Distance to fog start

● GL_FOG_END: Distance to maximum fog density
• These parameters only apply to GL_LINEAR fog

● GL_FOG_DENSITY: Density (surprise!) of the fog
• This parameter only applies to GL_EXP and GL_EXP2 fog

● GL_FOG_COLOR

All parameters set via glFog{if}[v]

20-November-2007 © Copyright Ian D. Romanick 2007

Fog Modes
Fog is applied according to one of 3 equations:

● GL_LINEAR:

● GL_EXP:

● GL_EXP2:

The mode, start, end, and density control how
OpenGL calculates the fog weight from the Z
value
● Somewhat like lighting

Set as the GL_FOG_MODE parameter of glFogi

e−d×c 
2

e−d×c 

end−c
end−start

20-November-2007 © Copyright Ian D. Romanick 2007

Explicit Fog Coordinate
 Instead of allowing the GL to calculate a fog

coordinate, specify one explicitly
● GL_EXT_fog_coord or version 1.4

● Set GL_FOG_COORD_SRC to GL_FOG_COORD to
enable
• Set it to GL_FRAGMENT_DEPTH to disable

Fog coord specified by glFogCoord1{fd}[v]
● Coordinate is the distance used in the fog equations

●Not the fog weight!

20-November-2007 © Copyright Ian D. Romanick 2007

Height­based Fog
Fog factor is given by:

Where:
 is the fog density function

A and B are points in space

● This integral gives the “optical depth”.

● One simplifying assumption:  depends only on
height

e
−∫A

B
t dt

20-November-2007 © Copyright Ian D. Romanick 2007

Height­based Fog (cont.)
Two components to the optical distance

between the eye and the fogged point:

● Change in altitude: y = y
point

 – y
eye

● Distance in the plane: D = ((X
point

 – X
eye

)2 + (Z
point

 –

Z
eye

)2)

Two important cases:

●y  0: D × y
point

●y  0: 1D y 
2

×∫yeye

y point
 y dy

20-November-2007 © Copyright Ian D. Romanick 2007

Height­based Fog (cont.)
Store a look-up where the value at an element

n is:

To calculate the integral over y
eye

 to y
point

, simply

calculate table[y_point]-table[y_eye]
● This kind of table is called a summed-area table,

and it is incredibly useful!

∫−∞

n
 y dy

20-November-2007 © Copyright Ian D. Romanick 2007

References
http://developer.nvidia.com/object/shadows_transparency_fog.html

http://mrl.nyu.edu/~perlin/experiments/ball/

● Very cool example of what can be done with explicit fog
coordinates...by one of the legends of computer graphics

http://mrl.nyu.edu/~perlin/experiments/gabor/

● Some of the theory behind the above Java applet.

Legakis, J. Fast multi-layer fog. In ACM SIGGRAPH 98
Conference Abstracts and Applications (Orlando, Florida,
United States, July 19 - 24, 1998). SIGGRAPH '98. ACM, New
York, NY.

● Great paper, but not available on-line. :(

http://developer.nvidia.com/object/shadows_transparency_fog.html
http://mrl.nyu.edu/~perlin/experiments/ball/
http://mrl.nyu.edu/~perlin/experiments/gabor/

20-November-2007 © Copyright Ian D. Romanick 2007

Radial Fog
GL_FRAGMENT_DEPTH based fog generates

incorrect values away from the screen center
● It uses the distance from the near plane instead of

the distance from the eye.
● Could fix by calculating

true distance on CPU and
using explicit fog
coordinates.

20-November-2007 © Copyright Ian D. Romanick 2007

Radial Fog (cont.)
GL_NV_fog_distance also fixes this.

● Adds new fog param GL_FOG_DISTANCE_MODE_NV
● Three possible values:

• GL_EYE_PLANE: Fog coord is Z value in eye-space
• GL_EYE_PLANE_ABSOLUTE_NV: Fog coord is ∣Z∣ value

in eye-space
● This is the “usual” approximation allowed by the OpenGL spec

• GL_EYE_RADIAL_NV: Fog coord is the distance of the
point to the eye

20-November-2007 © Copyright Ian D. Romanick 2007

Blending
Typically used for one of a few operations:

● Translucent / transparent objects
• In general this is a hard problem
• Objects must be rendered back to front
• Polygons can't intersect

● Antialiasing
• Especially useful for fonts

● 2D compositing
• Uh...you've seen OS X, right?

● Multi-pass rendering

20-November-2007 © Copyright Ian D. Romanick 2007

Blend Function

Fragment color

F
dst

C
dst

F
src

C
src

Source blending factor:
● GL_ZERO

● GL_ONE

● GL_SRC_ALPHA

● GL_ONE_MINUS_SRC_ALPHA

● GL_DST_COLOR

● GL_ONE_MINUS_DST_COLOR

● GL_DST_ALPHA

● GL_ONE_MINUS_DST_ALPHA

● GL_SRC_ALPHA_SATURATE

F
src

 = min(A
s
, 1 - A

d
)

Color already in framebuffer

Destination blending factor:
● GL_ZERO

● GL_ONE

● GL_SRC_COLOR

● GL_ONE_MINUS_SRC_COLOR

● GL_SRC_ALPHA

● GL_ONE_MINUS_SRC_ALPHA

● GL_DST_ALPHA

● GL_ONE_MINUS_DST_ALPHA

× ×

20-November-2007 © Copyright Ian D. Romanick 2007

GL_EXT_blend_color
F

dst
C

dst
F

src
C

src

Source blending factor:
● GL_CONSTANT_COLOR_EXT

● GL_ONE_MINUS_CONSTANT_COLOR_EXT

● GL_CONSTANT_ALPHA_EXT

● GL_ONE_MINUS_CONSTANT_ALPHA_EXT

Destination blending factor:
● GL_CONSTANT_COLOR_EXT

● GL_ONE_MINUS_CONSTANT_COLOR_EXT

● GL_CONSTANT_ALPHA_EXT

● GL_ONE_MINUS_CONSTANT_ALPHA_EXT

× ×

Constant color set with glBlendColorEXT.

 Included in version 1.4 and GL_ARB_imaging
● These versions drop EXT from names.

20-November-2007 © Copyright Ian D. Romanick 2007

GL_NV_blend_square
F

dst
C

dst
F

src
C

src

Source blending factor:
● GL_SRC_COLOR

● GL_ONE_MINUS_SRC_COLOR

Destination blending factor:
● GL_DST_COLOR

● GL_ONE_MINUS_DST_COLOR

× ×

Also included with core version 1.4.

20-November-2007 © Copyright Ian D. Romanick 2007

Blend Equation

Several extensions allow different math:
● GL_EXT_blend_subtract: GL_SUBTRACT,
GL_REVERSE_SUBTRACT

● GL_EXT_blend_minmax: GL_MIN, GL_MAX
• Both included in 1.4 and GL_ARB_imaging.

Equation set with glBlendEquation.

Others exist, but are very rare.

F
dst

C
dst

F
src

C
src

× ×

20-November-2007 © Copyright Ian D. Romanick 2007

Separate Blend Function / Equation
Function and equation apply to RGB and A.

GL_EXT_blend_function_separate allows
a different function for color and alpha.
● Adds glBlendFuncSeparateEXT
● Included in core version 1.4.

GL_EXT_blend_equation_separate allows
a different equation for color and alpha.
● Adds glBlendEquationSeparateEXT
● Included in core version 2.0.

20-November-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/Alpha_compositing

● Good background of general alpha blending theory

http://developer.nvidia.com/object/order_independent_transparency.html

● Solves the ordering problem, but requires features we won't
cover this term.

● Will be required reading for VGP352. :)

http://en.wikipedia.org/wiki/Alpha_compositing
http://developer.nvidia.com/object/order_independent_transparency.html

20-November-2007 © Copyright Ian D. Romanick 2007

Alpha Test
Yet another way to reject fragments

● Enable with GL_ALPHA_TEST
● Set test function and reference value with
glAlphaFunc
• Same set of functions available as with depth testing.

● Compares fragment alpha with the reference value
• If the test fails, the fragment is rejected.
• Similar to depth testing

Alpha testing occurs before stencil testing
● ...and stencil testing happens before depth testing

20-November-2007 © Copyright Ian D. Romanick 2007

Multi­pass Rendering
Please...no 5th Element jokes.

Multi-pass rendering is used more work has to
be done than the hardware can handle.
● Example: produce correct specular highlights on

textured objects without
GL_EXT_separate_specular

● Example: want to do bump-mapped shading for
diffuse and specular, but only have 2 texture units

20-November-2007 © Copyright Ian D. Romanick 2007

Multi­pass Rendering (cont.)
Divide rendering into steps that the texture

combiners can do and that are separated by
math that the blender can do
● Example: Perform diffuse textured pass. Configure

blender to add fragment color to framebuffer.
Finally, perform specular-only pass.

20-November-2007 © Copyright Ian D. Romanick 2007

Problems with Multi­pass
Why do we want to avoid multi-passing?

20-November-2007 © Copyright Ian D. Romanick 2007

Problems with Multi­pass
Why do we want to avoid multi-passing?

● It's slower.
• The memory for each pixel gets accessed multiple times
• Have to process the same geometry multiple times
• Have to change state (e.g., textures) between passes

20-November-2007 © Copyright Ian D. Romanick 2007

Problems with Multi­pass
Why do we want to avoid multi-passing?

● It's slower.
• The memory for each pixel gets accessed multiple times
• Have to process the same geometry multiple times
• Have to change state (e.g., textures) between passes

● Less accurate
• Common best-case framebuffer has 8-bits of precision

per color component
• Common best-case texture combiners have 12-bits of

precision per color component

20-November-2007 © Copyright Ian D. Romanick 2007

Problems with Multi­pass (cont.)
Why do we want to avoid multi-passing?

● Can't always achieve desired result
• Doesn't work well with translucent objects
• Can't alway break the math down

20-November-2007 © Copyright Ian D. Romanick 2007

References
http://www.bluesnews.com/cgi-bin/finger.pl?id=1&time=20000429013039

● Interesting comments by John Carmack about color
precision in multi-pass rendering

http://www.bluesnews.com/cgi-bin/finger.pl?id=1&time=20000429013039

20-November-2007 © Copyright Ian D. Romanick 2007

Next week...
Faster geometry:

● Vertex arrays

● Vertex buffer objects

 Image transfers (maybe)
● Read pixels / draw pixels

● Color matrix

● Pixel buffer objects

20-November-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

